Improving Performance in Size-Constrained Extended Classifier Systems

نویسنده

  • Devon Dawson
چکیده

Extended Classifier Systems, or XCS, have been shown to be successful at developing accurate, complete and compact mappings of a problem’s payoff landscape. However, the experimental results presented in the literature frequently utilize population sizes significantly larger than the size of the search space. This resource requirement may limit the range of problem/hardware combinations to which XCS can be applied. In this paper two sets of modifications are presented that are shown to improve performance in small sizeconstrained 6-Multiplexer and Woods-2 problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modifying XCS for Size-Constrained Systems

Extended Classifier Systems, or XCS, is a soft-computing approach to machine learning in rule-based systems. While XCS has been shown effective in learning accurate, compact and complete mappings of an environment’s payoff landscape, it can require significant resources to do so. This paper presents four modifications that allow XCS to achieve high performance even in highly size-constrained po...

متن کامل

The Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS

The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...

متن کامل

The Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS

The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...

متن کامل

A chance-constrained multi-objective model for final assembly scheduling in ATO systems with uncertain sub-assembly availability

A chance-constraint multi-objective model under uncertainty in the availability of subassemblies is proposed for scheduling in ATO systems. The on-time delivery of customer orders as well as reducing the company's cost is crucial; therefore, a three-objective model is proposed including the minimization of1) overtime, idletime, change-over, and setup costs, 2) total dispersion of items’ deliver...

متن کامل

Offline Auto-Tuning of a PID Controller Using Extended Classifier System (XCS) Algorithm

Proportional + Integral + Derivative (PID) controllers are widely used in engineering applications such that more than half of the industrial controllers are PID controllers. There are many methods for tuning the PID parameters in the literature. In this paper an intelligent technique based on eXtended Classifier System (XCS) is presented to tune the PID controller parameters. The PID controlle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003